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HINTS FOR ASSIGNED EXERCISES 42-59

42.
Working in the far zone r′ � λ � r, con-
sider azimuthally symmetric (m = 0) electric
quadrupole (E20) radiation. At a particular an-
gular frequency ω, work with the complex fields
�̃B(�r) and �̃E(�r) defined by

�B(�r, t) ≡ Re
( �̃B(�r)e−iωt

)
�E(�r, t) ≡ Re

(�̃E(�r)e−iωt
)
.

For E-type radiation, the magnetic field �̃B (⊥ r̂)
is proportional to the vector spherical harmonic
�X:

�̃B ∝ �X20(θ, φ) ≡ �LY20(θ, φ) ,

with i�L ≡ �r ×∇ . Use the fact that

�̃E ≈ c�̃B × r̂

in the far zone. Obtain a function f(θ, φ) such
that the radiated power P in the far zone is
proportional to it:

dP

dΩ
∝ f(θ, φ) .

Hint:
Since Yl0 is independent of φ, the only part of
�r×∇ that is relevant to this problem is φ̂ ∂

∂θ (see
problem 40). This makes it easy to compute the

angular dependence of �̃B. The time-averaged
Poynting vector is

〈�S〉 =
1

2µ0
Re(�̃E × �̃B

∗
)

(see Griffiths Problem 11.15). Combine this with
the equation

�̃E ≈ c�̃B × r̂

and apply the bac − cab rule. This should con-
vince you that P ∝ | �̃B|2.

43.
At t = 0, charges +e lie on the top right and
bottom left corners of a square of side b in the
xy plane that is centered at the origin; charges
−e lie on the top left and bottom right corners.
(a.)
Determine the lowest-l nonvanishing electro-
static multipole moment(s) of the charge dis-
tribution.
Hint:
Start with the definition

qlm ≡
∫
dτ ′ρ(�r ′)r′l Y ∗

lm(θ′, φ′)

of the multipole moments. For four point
charges, the charge distribution is the sum of
four 3-dimensional δ functions:

ρ(�r ′)
e

=
3∑

n=0

(−1)nδ3(�r ′ − �an) ,

where the four charges are located at spherical
polar coordinates (r, θ, φ) of

�an =
(

b√
2
, π2 , (2n + 1)π4

)
.

As usual, the integral over a δ function is equal
to the value of the integrand where the δ func-
tion is infinite. Taking the dependence upon φ
of Y ∗

lm to be exp (−imφ),

qlm ∝
3∑

n=0

(−1)n exp
(−im(2n + 1)π4

)
.

For what unique value of |m| does the rhs sum
to a nonzero result? Note that both signs of m
contribute (with what relative weight?). What
is the lowest-l spherical harmonic Ylm for which
this value of |m| is possible? Is that particular
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Ylm nonzero at θ = π
2 where the charges lie?

(b.)
The static charge distribution in (a.) now is set
into oscillation: as time advances, the position
vector of each charge is multiplied by the same
factor 1 + ε cosωt, where ω and 0 < ε � 1 are
real constants. (Note that the charges do not
move in a circle.) Using the fact that a static
electric multipole corresponding to a given l and
m, when caused to oscillate, yields E-type (TM)
multipole radiation of the same l and m, what
type(s) of radiation (e.g. E10) is (are) emitted?
(c.)
Using the facts introduced in the previous prob-
lem, but generalizing them to the spherical har-
monic(s) appropriate here, obtain a function
f(θ, φ) such that the radiated power P in the far
zone b � 2πc

ω � r is proportional to it:

dP

dΩ
∝ f(θ, φ) .

At how many points on the unit sphere (e.g. the
north pole) does this radiation pattern vanish?
Hint:
In principle it would be acceptable to take ad-
vantage of the fact that Jackson (page 437) has
tabulated the angular dependence of | �Xlm|2 for
0 ≤ l ≤ 2. [In the previous problem you already
demonstrated your ability to compute an �Xlm

given a Ylm .] But in this problem, �Xlm’s with

two values of m contribute coherently; the �̃B’s
corresponding to each �Xlm must be added be-
fore the square modulus of �̃B can be taken. This
forces you to calculate the �Xlm’s that you need
without taking advantage of Jackson’s table. If
you get the algebra right, you’ll find that the ra-
diation pattern takes a fairly simple form, but
it vanishes at more than two points on the unit
sphere.

44.
Griffiths Problem 11.15.
Hint:
The algebra for this problem can be simplified
somewhat by defining u ≡ cos θ and maximizing
Griffiths’ Eq. (11.74) with respect to u. Solve
the resulting quadratic equation for u. In the ul-
trarelativistic limit it will also be convenient to

define ε ≡ 1 − β. In that limit ε � 1 and, near
where the maximum radiation is emitted, θ � 1.
To obtain Griffiths’ approximate result you will
need the Taylor expansions

cos θ ≈ 1 − θ2

2

(1 + ε)n ≈ 1 + nε .

45.
Start from the expression derived in class for the
energy radiated by an accelerating point charge
per steradian per unit of retarded time t′:

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c

∣∣R̂× [
(R̂− �β) × �̇

β
]∣∣2

(1 − R̂ · �β)5
.

Consider synchrotron radiation by a particle of
charge q moving in a circular orbit of radius b in
a coordinate system where

β̂ = ẑ

ˆ̇
β = x̂ ,

i.e. x̂ points toward the center of the circle and
ẑ points along its circumference in the particle’s
direction of motion. Define

R̂ ≡ (nx, ny, nz) ,

where n̂ is a unit vector extending from the par-
ticle in an arbitrary direction towards which an
element of radiation is emitted.
(a.)
Show that

R̂× [
(R̂− �β) × ˆ̇

β
]

= n̂nx − x̂− βn̂× ŷ .

Hint:
Apply the bac− cab rule.
(b.)
Using this result, show that

∣∣R̂×[
(R̂−�β)× ˆ̇

β
]∣∣2 = 1−2βnz+β2n2

z−(1−β2)n2
x
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(c.)
Consider a set of spherical polar coordinates cen-
tered at the particle (not at the center of the
beam circle). Taking θ to be the polar angle of
n̂ relative to ẑ, and φ to be its azimuth about ẑ,
express nx and nz in terms of θ and φ.
Hint:
Consult gic #4.
(d.)
Using the results of (b.) and (c.), show that

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c
×

× β̇2

(1 − β cos θ)3
(
1 − sin2 θ cos2 φ

γ2(1 − β cos θ)2
)
.

46.
Consider the result of the previous problem in
the relativistic limit γ � 1. In that limit, the
nonnegligible part of the total radiation that is
emitted occurs at polar angles θ such that γθ is
of order unity.
(a.)
Approximating cos θ and sin θ to lowest nonva-
nishing order in θ, perform the integration over
dΩ = d(cos θ) dφ, integrating by parts where
necessary, to show that

4πε0
dW

dt′
=

2
3c3

(qβ̇c)2γ4 .

[Note that (qβ̇c)2 is equivalent to p̈2, where p is
the electric dipole moment of the point charge
relative to the origin. Therefore this result is the
same as the (nonrelativistic) Larmor formula,
except for the additional factor γ4.]
Hint:
In the relativistic limit, the quantities 1/γ and
θ (where most of the radiation is emitted) are
small and of the same order. Using Taylor ex-
pansions, show that

1 − β cos θ ≈ 1 + γ2θ2

2γ2
.

Write ∮
dΩ ≈

∫ 2π

0

dφ

∫ b

0

θ dθ ,

where b � 1/γ includes the nonnegligible part
of the radiation pattern (to lowest order your
answer will not depend on its exact value). Inte-
grating the first term of the integrand is trivial;
the second term may be integrated by parts.

Alternatively, this problem may be done more
easily without making any approximation! De-
fine u ≡ 1 − β cos θ and express the integrand as
a function of u rather than θ. It becomes a poly-
nomial in u that may trivially be integrated.
(b.)
In terms of the |momentum| P of the point
charge and its rest mass m, show that

4πε0
dW

dt′
=

2q2

3c3
P 4

m4b2
,

and thus that the power lost to synchrotron ra-
diation depends on the fourth power of P , the
inverse fourth power of m (making it usually
negligible for all but electrons), and the inverse
square of b.
Hint:
For motion around a circle of radius b, the cen-
tripetal acceleration β̇c is equal to (βc)2/b. Use
P = γβmc .
(c.)
Suppose that you use an electron synchrotron
that taxpayers can afford. It circulates highly
relativistic electrons with β ≈ 1. You want to
build a new synchrotron with the same beam
current, the same power lost to synchrotron ra-
diation, but twice the beam momentum. Show
that the radius b of the new synchrotron must
increase by a factor of 16.
Hint:
Keep in mind that if the beam current stays the
same while the synchrotron radius increases by a
factor λ, the total number of radiating electrons
increases by λ as well.

47.
A free-electron laser consists of a beam of elec-
trons (with constant velocity βc) passing through
a structure known as a wiggler or undulator.
(These structures are used also in sections of a
circular electron synchrotron such as the ALS.)
Take the beam direction to be ẑ. Consider an al-
ternating set of magnets (for compactness, these
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are often permanent magnets, made of samarium
cobalt as developed at LBL by the late Klaus
Halbach). With a full period ∆z, they produce
a strong magnetic field that points alternately in
the +x̂ and −x̂ directions.
(a.)
In the rest frame S ′ of the electron, with what
fundamental angular frequency ω′ does the mag-
netic field from the wiggler appear to oscillate?
Hint:
Apply a Lorentz contraction to get the apparent
spacing of the magnets as seen by the electron.
Divide it by the relative velocity (between the
electron and the magnets) to obtain the time
period of the magnetic field as seen by the elec-
tron.
(b.)
In S ′, the oscillating electron produces elec-
tromagnetic radiation with angular frequency
ω′. Applying the relativistic Doppler shift to
(“forward”) radiation emitted along the beam
direction, what angular frequency ω does that
radiation have in the laboratory frame?
Hint:
As an alternative to the relativistic Doppler
formula, you may simply perform an inverse
Lorentz transformation on the 0th component of
the wave four-vector (ω/c,�k). You are describing
a massless photon, so |�k| = ω/c in either frame.
(c.)
Express λ, the wavelength of the forward radia-
tion, as a multiple of ∆z.
(d.)
At LBL’s ALS, using an alternating set of mag-
nets with ∆z = 10 cm, an experimenter wishes
to study the effect upon condensed-matter sam-
ples of a soft X-ray beam of wavelength 5 nm.
Use this information to estimate the ALS beam
energy (in GeV).

48.
Consider a medium with uniform fixed dielectric
constant ε, permeability µ, and volume conduc-
tivity σ.
(a.)
Taking the curl of the two Maxwell equations
which themselves involve the curl, and using
Ohm’s law ( �J = σ �E) and the two other Maxwell

equations where appropriate, derive the wave
equations

(∇2 − ∂2

v2 ∂t2

)
�B = σµ

∂ �B

∂t(∇2 − ∂2

v2 ∂t2

)
�E = σµ

∂ �E

∂t
+

1
ε
∇ρf ,

where the phase velocity2 v2 ≡ 1
εµ and ρf is the

volume free charge density.
Hint:
For example, to get the first equation (for �B),
take the curl of Ampère’s equation as modified
by Maxwell:

∇× �H = ( �J(f) = σ �E) +
∂ �D

∂t
.

Consult Rule (11) on gic #2 to transform the
curl curl. Argue that ∇· �H = 0 because �B = µ �H.
Substitute �D = ε �E and use Faraday’s law to re-
express ∇× �E = −∂ �B

∂t .
(b.)
In the wave equation for �B derived in (a.), sub-
stitute

�B(�r, t) = Re
(
�̃B exp

(
i(�̃k · �r − ωt)

))
,

where �̃B and �̃
k are complex (vector) constants.

Show that
k̃2

µω2
= ε(1 + iβ) ,

where β ≡ σ
εω .

Hint:
After substituting for �B in terms of �̃B, take ad-
vantage of the fact that the operators ∇ and
∂
∂t commute with the operator Re. Obtain a
complex expression whose real (physical) part
vanishes. Then define the imaginary (unphysi-
cal) part of that same expression also to vanish.
Solve the resulting complex equation for k̃2.
(c.)
Following Griffiths’ notation, write k̃ ≡ k + iκ,
where k and κ are real. Show that

k

ω/v
=

√√
1 + β2 + 1

2

κ

ω/v
=

√√
1 + β2 − 1

2
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are solutions to the equation that is the result of
part (b.).
Hint:
Keep the algebra under control by defining
q ≡ k̃

(ω/v) and solving the equation q2 = 1 + iβ.
Write q = r + is, where r and s are real. Solve
the imaginary part of the resulting equation for
s in terms of β and r. Substituting for s, solve
the resulting quadratic equation for r2. Choose
the sign for which r2 is positive. Taking the
square root, choose the sign for which r = 1 for
β = 0 (a pure insulator). Returning to your re-
sult for s in terms of β and r, plug in your result
for r and manipulate to get s.
(d.)
κ−1, the inverse of the imaginary part of k̃, is
called the skin depth. Show that the skin depth
approaches√

2
µσω

when β � 1 (good conductor)

2
σ

√
ε

µ
when β � 1 (poor conductor) .

Hint:
For a poor conductor, use the Taylor expansion
(1 + β)n ≈ 1 + nβ.

49.
Please refer to the notation and results of the
previous problem.
(a.)
At normal incidence at the interface between
two dissimilar materials 1 and 2, the (complex)
electric field amplitude reflected back into ma-
terial 1 is expressed as a (complex) ratio R̃ to
the (complex) incident amplitude. By matching
boundary conditions for the electric and mag-
netic fields, R̃ is routinely found to be given by
the standard result

R̃ =
Z̃−1

1 − Z̃−1
2

Z̃−1
1 + Z̃−1

2

,

where

Z̃−1 ≡ k̃

µω
,

the ratio of H̃ to Ẽ, is the medium’s (complex)
admittance. Consider the case in which material
1 is an insulator and material 2 is a conductor.

If material 2 is an excellent conductor (β � 1),
show that R̃ → −1 regardless of the (finite) val-
ues taken by ε1,2 and µ1,2. Therefore metals are
shiny.
(b.)
Suppose instead that material 2 is a poor conduc-
tor (β � 1) (otherwise all the conditions of part
(a.) apply). Suppose further that, if both ma-
terials had zero conductivity, they would have
equal admittance (

√
ε1/µ1 =

√
ε2/µ2). Show

that R̃ → −iβ/4.
(c.)
In a relatively more microscopic and detailed
treatment, one assumes that N valence electrons
per m3 having charge −e and mass m move in
a potential well with effective spring constant
mω2

0 and damping coefficient γm. One defines
the complex dielectric constant ε̃ via

ε̃

ε0
− 1 ≡ P̃

ε0Ẽ
,

where P̃ is the complex polarization, defined
analogously to the complex electric and mag-
netic fields in the previous problem. For not-
too-dense media in which the electric field felt
by the electron is approximately the same as
the average field, it is straightforward to solve
the force equation for these oscillating electrons
and determine the complex polarization P̃ they
create. One obtains

ε̃

ε0
− 1 =

ω2
p

ω2
0 − ω2 − iγω

,

where the plasma frequency2 is

ω2
p ≡ Ne2

mε0
.

The complex dielectric constant includes the
effects of all electrons (free and bound). Con-
sidering the result of part (b.) of the previous
problem, the complex dielectric constant is re-
lated to the ordinary dielectric constant ε (which
includes the effects only of bound electrons) by

ε̃ = ε(1 + iβ) =
k̃2

µω2
.
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Represent a good conductor by ω0 = 0 (un-
bound) and γ � ω (overdamped). Using these
results, show that the conductivity σ is approx-
imately

σ ≈ ε0ω
2
p

γ
,

i.e. measuring the low-frequency conductivity is
a simple way to determine the damping coeffi-
cient.
Hint:
Consider the imaginary part of ε̃/ε0.
(d.)
Represent the ionosphere by ω0 = 0 (unbound),
and γ � ω (underdamped). Specialize to AM
radio waves, for which ω < ωp. Show that
|R̃| ≈ 1, i.e. that AM radio waves are nearly
fully reflected by the ionosphere. (At dusk, the
ionosphere drops to sufficiently low altitude that
reflection off it enables AM stations hundreds of
miles away to be received.)
Hint:
Using the information given in this and the pre-
vious problem, first show that

k̃2 = µω2ε0
(
1 +

ω2
w

ω2
0 − ω2 − iγω

)
.

Then, for the underdamped case and for ω < ωp ,
argue that k̃ is almost pure imaginary, causing
the numerator of R̃ to be the complex conjugate
of the denominator.

50.
Griffiths Problem 9.11.
Hint:
Take the time average of 1

2 Re(f̃ g̃∗) at the same
point �r over one period T = 2π/ω.

51. Jones vectors.
For a plane transverse wave propagating in the ẑ
direction through a (not necessarily insulating)
material with constant ε and µ, a (co)sinusoidal
solution is represented by

�E(�r, t) = Re
(
�E0(x, y) ei(k̃z−ωt)

)
�H(�r, t) = Re

(
�H0(x, y) ei(k̃z−ωt)

)
,

where k̃ is the (not necessarily real) “wave vec-
tor” – here a scalar because we know it is

directed along ẑ. Faraday’s law causes �H0 to be
completely determined by �E0:

�H0 ≡ Z̃−1ẑ × �E0

=
k̃

µω
ẑ × �E0 ,

so we focus on �E0 as the sole independent vari-
able. For a transverse wave �E0 has no z compo-
nent. Here we assume that the phase relationship
between E0x and E0y is fixed – the wave is fully

polarized. Then �E0 is a complex transverse vec-
tor, completely specified by four components. In
the Jones convention, all information carried by
�E0 except for its magnitude is written as a 2× 1
column vector with the x component on top:

�E0 =
(

E0x

E0y

)

≡ 1√|α2| + |β2|

(
α
β

)
| �E0|

≡ �J | �E0| ,

where �J is the Jones vector. Jones vectors are
defined only within an overall phase (because
the absolute phase of an optical-frequency EM
wave can’t conveniently be measured); therefore
one has the freedom to set α equal to unity (un-
less it vanishes, in which case β is set to unity).
The above form involving the complex constants
α and β is a general Jones vector, corresponding
to elliptical polarization. More common Jones
vectors are

(
1
0

) (
0
1

)
1√
2

(
1
−i

)
1√
2

(
1
i

)
,

corresponding, respectively, to linear x, linear y,
RH circular, and LH circular polarization.
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(a.)
At z = 0, show (counterintuitively!) that the
electric field vector for RH polarized light pre-
cesses clockwise around ẑ, i.e. it precesses ac-
cording to the LH rule.
Hint:
Evaluate Re

(
�Je−iωt

)
and examine the time evo-

lution of the resulting x and y components.
(b.)
Suppose that a particular state of elliptical po-
larization has nonvanishing x and y electric field
components. Then, within an arbitrary overall
phase, it may be represented by the Jones vector

�J1 =
1√

1 + |β|2
(

1
β

)
,

where β is a complex constant. You wish to char-
acterize this state of polarization as “RH ellip-
tical” or “LH elliptical”, depending on whether
(at z = 0) the electric field vector precesses
clockwise or counterclockwise around ẑ. What
property of β would you use to decide whether
this state is RH or LH elliptical?
Hint:
Again evaluate Re

(
�J1e

−iωt
)

and examine the
time evolution of the resulting x and y com-
ponents. If the y component becomes negative
as t increases from 0, the elliptical polarization
is right-handed; if it becomes positive, the po-
larization is left-handed. What property of β
controls this behavior?
(c.)
For the conditions of part (b.), decompose �J1

into a linear sum (with real coefficients) of a
wave with linear polarization plus a wave with
RH circular polarization. Perform this same task
with “RH” replaced by “LH”. If you are success-
ful in both tasks, you might wonder whether
there really exists a unique association of RH or
LH behavior with �J1. Would this concern inval-
idate your answer to (b.)?
Hint:
For example, to decompose �J1 into a linearly
polarized wave plus a rhcp wave, take the dif-
ference (

1
β

)
− C

(
1
−i

)
.

Determine C such that this difference (the lin-
early polarized part) has elements that both

have the same phase.

52. Irradiance and Jones vectors.
Consider two transverse plane waves A and B
which move in vacuum and are combined to-
gether (i.e. by a Michelson interferometer). The
beams have complex electric fields(

EA
0x

EA
0y

)
=

| �EA
0 |√|α|2 + |β|2

(
α
β

)
(

EB
0x

EB
0y

)
=

| �EB
0 |√|γ|2 + |δ|2

(
γ
δ

)
.

Express the combined irradiance

IA+B ≡ 〈�SA+B · ẑ〉 ,
where �S is the Poynting vector and 〈 〉 is a time
average, as a function of the complex constants
α, β, γ, δ, and the uncombined irradiances IA
and IB of the individual beams.
Hint:
Start from the result of Griffiths’ Problem 9.11,
modified so that it is true in material as well as
vacuum:

〈�S〉 =
1
2µ

Re(�̃E × �̃B
∗
) .

Express Faraday’s law in terms of the complex

fields so that you can write �̃B
∗

in terms of �̃E
∗
.

You should obtain

�̃B
∗

=
k̃∗

ω
ẑ × �̃E

∗
.

By definition, the irradiance I ≡ 〈�S · ẑ〉 . For the
individual beams, you should obtain

IA,B =
1

2µω
Re

(
k̃∗ �̃EA,B · �̃E

∗
A,B

)
=

Re k̃
2µω

|�̃EA,B |2 .

For the combined beam (C), write �̃EC = �̃EA +
�̃EA . You should obtain

IC = IA + IB +
1

2µω
Re

(
k̃∗(�̃EA · �̃E

∗
B+ �̃EB · �̃E

∗
A)

)
= IA + IB +

Re k̃
µω

Re
(�̃EA · �̃E

∗
B

)
.
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Finally, substitute the Jones vectors supplied for
�̃EA and �̃EB :

�̃EA,B = |�̃EA,B | �JA,B .

Solve for IC as a function of the variables re-
quired by the problem.

53.
(a.)
A set of N ideal linear polarizers L1 . . .LN

is arranged so that x̂ polarized light passes
through them in ascending order. The trans-
mission axis of polarizer n is oriented along
(x̂ cosφn+ŷ sinφn), where φn = πn

2N . In the limit
N → ∞, deduce the Jones matrix for this set.
Hint:
Consider the effect on x̂ polarized light of the
first polarizer only. Use Pedrotti×2 (≡ P×2)
Eq. (14-15) with θ = π/2N . Taking N � 1,
show that the fractional reduction in electric
field amplitude is only of order N−2. In the
limit N → ∞, argue that the total reduction
in electric field amplitude after the infinite set
of ideal polarizers is negligible. Considering the
effect of this set of polarizers upon x̂ polar-
ized light, what is the left-hand column of the
corresponding Jones matrix? What about the
right-hand column?
(b.)
Consider a twisted nematic cell, as found in an
LCD display. It functions as a rotator (P×2
Eq. (14-21)). Show that if the rotator parameter
β = π

2 , the twisted cell will have the same effect
on x̂ polarized light as does the set of polarizers
described in (a.).
(c.)
Do the devices in (a.) and (b.) also have equiv-
alent effect on ŷ polarized light? Explain.
Hint:
Their effect is equivalent iff their Jones matrices
are the same.

54.
Apart from an experimentally irrelevant overall
phase, an ideal wave plate of thickness D with
phase retardation difference

δ ≡ (nx − ny)
ωD

c
,

having its slow axis along x̂, is represented by
the Jones matrix

MW(φ = 0) =
(

eiδ/2 0
0 e−iδ/2

)
.

If instead the wave plate has its slow axis along
(x̂ cosφ + ŷ sinφ), show that it is represented by
the general Jones matrix

MW(φ) =(
cos δ

2 + i sin δ
2 cos 2φ i sin δ

2 sin 2φ
i sin δ

2 sin 2φ cos δ
2 − i sin δ

2 cos 2φ

)

Note that δ = π
2 for a quarter-wave plate (qwp)

and δ = π for a half-wave plate (hwp), which
is equivalent to two qwps. Note also that, like
the general Jones matrix ML(φ) for the ideal
linear polarizer (P×2 Eq. (14-15)), MW(φ) is
symmetric and invariant to the transformation
φ → φ + π. However, unlike ML(φ), MW(φ)
is also unitary (M−1 = M†) with unit determi-
nant, preserving the irradiance.
Hint:
First make a 2D coordinate (passive) rotation
(x, y) → (x′, y′) so that the wave plate’s slow
axis is along x̂′. Then apply the Jones matrix
MW(φ = 0). Finally, rotate back to the (x, y)
frame.

55.
Use the result of the previous problem to do
Pedrotti×2 Problem 14-11. To get their result
you must assume, as they do [Eqs. (14-17)-(14-
20)], that the wave plate’s slow axis lies along
either the x or y axis.
Hint:
The initial state is described by P×2 Eq. (14-6).
After the final state is put in the same form (with
α replaced by α′), the final angle of inclination
is simply α′. Alternatively, P×2 Eq. (14-10)
supplies a general result for the final angle of in-
clination, useful even for elliptical polarization;
this problem involves only the linearly polarized
case for which ε = 0 in that equation.
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56.
(a.)
Do Pedrotti×2 Problem 14-17. Does their Jones
matrix really convert any state of incident po-
larization to a finite irradiance of RH polarized
light? Explain.
(b.)
Devise a combination of ideal wave plate(s) and
polarizer(s) that, within a multiplicative con-
stant, yields the Jones matrix of part (a.). Sup-
ply the absolute magnitude of this constant.
Congratulations! You have invented an ideal ho-
mogeneous right-hand circular polarizer.
Hint:
As an alternative to multiplying random Jones
matrices until you find a combination that works,
you could reason physically. You want a device
that emits only RH circularly polarized (rhcp)
light. Recall the “points-of-the-compass” dia-
gram drawn in class: applying a qwp with slow
axis at +45◦ produces the transitions x̂ lp →
lhcp → ŷ lp → rhcp → x̂ lp (replace → by ←
for a qwp with slow axis at −45◦). Therefore,
for example, an x̂ linear polarizer upstream of
a qwp with slow axis at −45◦ emits only rhcp
light. However, this isn’t the complete answer,
because you want a device that emits some rhcp
light unless the incident beam is lhcp (see part
(a.)). What can you put upstream of the x̂ lin-
ear polarizer that emits some x̂ lp light unless
the beam incident upon it is lhcp?
(c.)
Show that the result of part (b.) functions also
as a right-hand circular analyzer, i.e. it fully
transmits RH circularly polarized light and fully
absorbs LH circularly polarized light.

57. Stokes vectors #1.
Using the standard definition of the complex
electric field �E0,

�E(z, t) = Re
(
�E0 exp (i(k̃z − ωt))

)
,

consider the case in which the phase difference
between its x and y components

ε(t) = argE0x − argE0y

is not necessarily fixed, as would be the case
for fully polarized light, but rather is allowed to

vary with time – slowly with respect to ω−1, but
rapidly with respect to experimenters’ ability to
measure it. The Stokes vector S is defined by
the real elements

S ≡




S0

S1

S2

S3


 ≡ Re k̃

µω




|E0x|2 + |E0y|2
|E0x|2 − |E0y|2
〈2 Re(E0xE

∗
0y)〉

〈2 Im(E0xE
∗
0y)〉


 ,

where 〈〉 denotes the time average.
(a.)
Show that

S =
Re k̃
µω




|E0x|2 + |E0y|2
|E0x|2 − |E0y|2

〈2|E0x||E0y| cos ε〉
〈2|E0x||E0y| sin ε〉


 .

Hint:
Without loss of generality, substitute

E0x = |E0x| ei(η(t)−ε(t)/2)

E0y = |E0y| ei(η(t)+ε(t)/2)

in the definition of S.
(b.)
The normalized Stokes vector S̄ is defined to be
the usual Stokes vector divided by S0 , so that its
topmost element is unity. Consider a fully polar-
ized beam in an arbitrary state of polarization
described by the general Jones vector

J =
1√|α|2 + |β|2

(
α
β

)
.

Show that the normalized Stokes vector for this
beam is

S̄ =
1

|α|2 + |β|2




|α|2 + |β|2
|α|2 − |β|2
2 Re(αβ∗)
2 Im(αβ∗)


 .

Hint:
For a fully polarized beam, ε(t) in the re-
sult of part (a.) becomes a constant equal to
arg (β) − arg (α).
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(c.)
Using the result of (b.) and your knowledge of
Jones vectors, show that fully linearly polarized
beams in the x̂, ŷ, 1√

2
(x̂ + ŷ), and 1√

2
(x̂ − ŷ)

directions are described, respectively, by the nor-
malized Stokes vectors




1
1
0
0







1
−1
0
0







1
0
1
0







1
0
−1
0


 ,

and that fully circularly RH and LH polarized
beams are described, respectively, by the nor-
malized Stokes vectors




1
0
0
1







1
0
0
−1


 .

58. Stokes vectors #2.
Please refer to the notation and results of the
previous problem.
(a.)
For fully polarized (“p”) light (ε fixed), show that

S2
1 + S2

2 + S2
3 = S2

0 .

Hint:
Use the result of part (a.) of the previous prob-
lem; with ε fixed, it is unnecessary to average
over time.
(b.)
Natural (“n”) light is completely unpolarized.
It has |E0x| = |E0y|, but the phases of both
E0x and E0y vary randomly with time so that
〈cos ε〉 = 〈sin ε〉 = 0. For natural light, show
(conversely to (a.)) that

S1 = S2 = S3 = 0 .

59. Stokes vectors #3.
Please refer to the notation and results of the
previous two problems. Consider four devices:
(A) a grey filter passing half the incident irra-
diance; (B) an x̂ polarizer; (C) an 1√

2
(x̂ + ŷ)

polarizer; (D) a RH circular analyzer. After
passing through (only) device X, the beam has
irradiance IX. It can be shown that

S = 2




IA
IB − IA
IC − IA
ID − IA


 .

Therefore, a Stokes vector can be completely de-
termined by measuring only irradiances. This re-
veals one extent to which Stokes “vectors” satisfy
vector properties. The additive property nor-
mally associated with a vector, Stot = SA + SB
for two beams A and B, holds only if their irradi-
ances rather than their amplitudes add, i.e. only
if the two beams are completely mutually inco-
herent. This is a total contrast to Jones vectors,
which can be defined only for fully polarized
beams and can be added only if the two beams
are completely mutually coherent.
(a.)
Using the additive property for Stokes vectors in
mutually incoherent beams, show that an arbi-
trary beam

S =




S0

S1

S2

S3




is the (necessarily incoherent) superposition of a
fully polarized beam p and a natural-light beam
n. Show this by specifying the elements of the
constituent Stokes vectors Sp and Sn in terms of
the elements of the overall Stokes vector S.
Hint:
The bottom three elements of Sn vanish, so the
bottom three elements of Sp are the same as
those of S. Using the result of part (a.) of the
previous problem, deduce the top element of Sp.
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(b.)
Define the degree of polarization V by

V ≡ Ip
Ip + In

.

For the above arbitrary beam, show that

V =

√
S2

1 + S2
2 + S2

3

S0
.

Hint:
From the original definition of S, one sees that its
top element is simply the irradiance of the beam.

Appendix: Mueller matrices
The Mueller matrices manipulate Stokes vectors
in the same way that Jones matrices manipu-
late Jones vectors. For an x̂ polarizer and for
a 1√

2
(x̂ + ŷ) polarizer, the Mueller matrices are,

respectively,

1
2




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 1

2




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


 .

The Mueller matrices for a ŷ polarizer and for a
1√
2
(x̂− ŷ) polarizer are, respectively,

1
2




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 1

2




1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


 .

For a qwp with slow axis along x and for a
homogeneous right-hand circular polarizer, the
Mueller matrices are, respectively,


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


 1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

The Mueller matrices for a qwp with slow axis
along y and for a homogeneous left-hand circular
polarizer are, respectively,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


 1

2




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 .
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